Part Number Hot Search : 
BFY181 40N06 C15111 SKIIP2 HER804FT FBC30A HSA1300D HER804FT
Product Description
Full Text Search
 

To Download 24C02B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M
FEATURES
24C01B/02B
PACKAGE TYPES
PDIP NC NC NC Vss 1 24C01B/02B 2 3 4 8 7 6 5 Vcc WP SCL SDA
1K/2K 5.0V I2CTM Serial EEPROM
* Single supply with 5.0V operation * Low power CMOS technology - 1 mA active current typical - 10 A standby current typical at 5.0V - 5 A standby current typical at 5.0V * Organized as a single block of 128 bytes (128 x 8) or 256 bytes (256 x 8) * 2-wire serial interface bus, I2C compatible * 100 kHz compatibility * Self-timed write cycle (including auto-erase) * Page-write buffer for up to 8 bytes * 2 ms typical write cycle time for page-write * Hardware write protect for entire memory * Can be operated as a serial ROM * ESD protection > 3,000V * 1,000,000 ERASE/WRITE cycles guaranteed Data retention > 200 years * 8 pin DIP or SOIC package * Available for extended temperature ranges - Automotive (E): -40C to +125C
SOIC NC NC NC Vss 1 24C01B/02B 2 3 4 8 7 6 5 Vcc WP SCL SDA
DESCRIPTION
The Microchip Technology Inc. 24C01B and 24C02B are 1K bit and 2K bit Electrically Erasable PROMs. The devices are organized as a single block of 128 x 8 bit or 256 x 8 bit memory with a 2-wire serial interface. The 24C01B and 24C02B also have page-write capability for up to 8 bytes of data. The 24C01B and 24C02B are available in the standard 8-pin DIP and an 8-pin surface mount SOIC package. These devices are for extended temperature applications only. It is recommended that all other applications use Microchip's 24LC01B/02B.
BLOCK DIAGRAM
WP
HV GENERATOR
I/O CONTROL LOGIC
MEMORY CONTROL LOGIC
XDEC
EEPROM ARRAY PAGE LATCHES
SDA SCL
YDEC
VCC VSS
SENSE AMP R/W CONTROL
I2C is a trademark of Philips Corporation.
(c) 1997 Microchip Technology Inc.
Preliminary
DS21233A-page 1
24C01B/02B
1.0
1.1
ELECTRICAL CHARACTERISTICS
Maximum Ratings*
TABLE 1-1:
Name VSS SDA SCL WP VCC NC
PIN FUNCTION TABLE
Function Ground Serial Address/Data I/O Serial Clock Write Protect Input +5.0V Power Supply No Internal Connection
VCC...................................................................................7.0V All inputs and outputs w.r.t. VSS ................-0.6V to VCC +1.0V Storage temperature ..................................... -65C to +150C Ambient temp. with power applied................. -65C to +125C Soldering temperature of leads (10 seconds) ............. +300C ESD protection on all pins............................................. 4 kV
*Notice: Stresses above those listed under "Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
TABLE 1-1:
DC CHARACTERISTICS
VCC = +4.5V to 5.5V Automotive (E): Tamb = -40C to 125C Symbol VIH VIL VHYS VOL ILI ILO CIN, COUT ICC Write ICC Read ICCS -10 -10 -- -- -- -- .05 VCC Min. .7 VCC .3 VCC -- .40 10 10 10 3 1 30 100 Max. Units V V V V A mA pF mA mA A A VCC = 3.0V, SDA = SCL = VCC VCC = 5.5V, SDA = SCL = VCC (Note) IOL = 3.0 mA, VCC = 2.5V VIN = .1V to 5.5V VOUT = .1V to 5.5V VCC = 5.0V (Note 1) Tamb = 25C, FCLK = 1 MHz VCC = 5.5V, SCL = 100 kHz Conditions
All parameters apply across the specified operating ranges unless otherwise noted. Parameter WP, SCL and SDA pins: High level input voltage Low level input voltage Hysteresis of Schmidt trigger inputs Low level output voltage Input leakage current Output leakage current Pin capacitance (all inputs/outputs) Operating current Standby current Note:
This parameter is periodically sampled and not 100% tested.
FIGURE 1-1:
BUS TIMING START/STOP
VHYS
SCL TSU:STA SDA THD:STA TSU:STO
START
STOP
DS21233A-page 2
Preliminary
(c) 1997 Microchip Technology Inc.
24C01B/02B
TABLE 1-2: AC CHARACTERISTICS
Vcc = 4.5V to 5.5V Automotive (E): Tamb = -40C to +125C, All Parameters apply across the specified operating ranges unless otherwise noted
Parameter Clock frequency Clock high time Clock low time SDA and SCL rise time SDA and SCL fall time START condition hold time START condition setup time Data input hold time Data input setup time STOP condition setup time Output valid from clock Bus free time Output fall time from VIH minimum to VIL maximum Input filter spike suppression (SDA and SCL pins) Write cycle time Endurance
Symbol FCLK THIGH TLOW TR TF THD:STA TSU:STA THD:DAT TSU:DAT TSU:STO TAA TBUF TOF TSP TWR --
Min. -- 4000 4700 -- -- 4000 4700 0 250 4000 -- 4700 -- -- -- 1M
Max. 100 -- -- 1000 300 -- -- -- -- -- 3500 -- 250 50 10 --
Units kHz ns ns ns ns ns ns ns ns ns ns ns ns ns ms cycles (Note 2) (Note 1) (Note 1)
Remarks
After this period the first clock pulse is generated Only relevant for repeated START condition (Note 2)
Time the bus must be free before a new transmission can start (Note 1), CB 100 pF (Note 3) Byte or Page mode 25C, Vcc = 5.0V, Block Mode (Note 4)
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF. 2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region (minimum 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions. 3: The combined TSP and VHYS specifications are due to Schmitt trigger inputs which provide improved noise spike suppression. This eliminates the need for a TI specification for standard operation. 4: This parameter is not tested but guaranteed by characterization. For endurance estimates in a specific application, please consult the Total Endurance Model which can be obtained on our BBS or website.
FIGURE 1-2:
BUS TIMING DATA
TF THIGH TLOW TR
SCL TSU:STA SDA IN THD:STA TSP TAA SDA OUT THD:STA THD:DAT TSU:DAT TSU:STO
TAA
TBUF
(c) 1997 Microchip Technology Inc.
Preliminary
DS21233A-page 3
24C01B/02B
2.0 FUNCTIONAL DESCRIPTION
3.4 Data Valid (D)
The 24C01B/02B supports a bi-directional two wire bus and data transmission protocol. A device that sends data onto the bus is defined as transmitter, and a device receiving data as receiver. The bus has to be controlled by a master device which generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions, while the 24C01B/02B works as slave. Both master and slave can operate as transmitter or receiver but the master device determines which mode is activated. The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data. Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of the data bytes transferred between the START and STOP conditions is determined by the master device and is theoretically unlimited, although only the last sixteen will be stored when doing a write operation. When an overwrite does occur it will replace data in a first in first out fashion.
3.0
BUS CHARACTERISTICS
The following bus protocol has been defined: * Data transfer may be initiated only when the bus is not busy. * During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is HIGH will be interpreted as a START or STOP condition. Accordingly, the following bus conditions have been defined (Figure 3-1).
3.5
Acknowledge
Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit. Note: The 24C01B/02B does not generate any acknowledge bits if an internal programming cycle is in progress.
3.1
Bus Not Busy (A)
Both data and clock lines remain HIGH.
3.2
Start Data Transfer (B)
A HIGH to LOW transition of the SDA line while the clock (SCL) is HIGH determines a START condition. All commands must be preceded by a START condition.
3.3
Stop Data Transfer (C)
The device that acknowledges has to pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.
A LOW to HIGH transition of the SDA line while the clock (SCL) is HIGH determines a STOP condition. All operations must be ended with a STOP condition.
FIGURE 3-1:
(A) SCL (B)
DATA TRANSFER SEQUENCE ON THE SERIAL BUS
(D) (D) (C) (A)
SDA
START CONDITION
ADDRESS OR ACKNOWLEDGE VALID
DATA ALLOWED TO CHANGE
STOP CONDITION
DS21233A-page 4
Preliminary
(c) 1997 Microchip Technology Inc.
24C01B/02B
3.6 Device Address
4.0
4.1
WRITE OPERATION
Byte Write
After generating a START condition, the bus master transmits the slave address consisting of a 4-bit device code (1010) for the 24C01B/02B, followed by three don't care bits. The eighth bit of slave address determines if the master device wants to read or write to the 24C01B/02B (Figure 3-2). The 24C01B/02B monitors the bus for its corresponding slave address all the time. It generates an acknowledge bit if the slave address was true and it is not in a programming mode. Operation Read Write Control Code 1010 1010 Chip Select XXX XXX R/W 1 0
Following the start signal from the master, the device code (4 bits), the don't care bits (3 bits), and the R/W bit which is a logic low is placed onto the bus by the master transmitter. This indicates to the addressed slave receiver that a byte with a word address will follow after it has generated an acknowledge bit during the ninth clock cycle. Therefore the next byte transmitted by the master is the word address and will be written into the address pointer of the 24C01B/02B. After receiving another acknowledge signal from the 24C01B/02B the master device will transmit the data word to be written into the addressed memory location. The 24C01B/02B acknowledges again and the master generates a stop condition. This initiates the internal write cycle, and during this time the 24C01B/02B will not generate acknowledge signals (Figure 4-1).
FIGURE 3-2:
START
CONTROL BYTE ALLOCATION
READ/WRITE
4.2
Page Write
SLAVE ADDRESS
R/W
A
1
0
1
0
X
X
X
X = Don't care
The write control byte, word address and the first data byte are transmitted to the 24C01B/02B in the same way as in a byte write. But instead of generating a stop condition the master transmits up to eight data bytes to the 24C01B/02B which are temporarily stored in the on-chip page buffer and will be written into the memory after the master has transmitted a stop condition. After the receipt of each word, the three lower order address pointer bits are internally incremented by one. The higher order five bits of the word address remains constant. If the master should transmit more than eight words prior to generating the stop condition, the address counter will roll over and the previously received data will be overwritten. As with the byte write operation, once the stop condition is received an internal write cycle will begin (Figure 4-2).
FIGURE 4-1:
BUS ACTIVITY MASTER
BYTE WRITE
S T A R T CONTROL BYTE WORD ADDRESS DATA S T O P
SDA LINE
S
A C K A C K A C K
P
BUS ACTIVITY
FIGURE 4-2:
BUS ACTIVITY MASTER
PAGE WRITE
S T A R T CONTROL BYTE WORD ADDRESS (n) S T O P
DATA n
DATAn + 1
DATAn + 7
SDA LINE
S
A C K A C K A C K A C K A C K
P
BUS ACTIVITY
(c) 1997 Microchip Technology Inc.
Preliminary
DS21233A-page 5
24C01B/02B
5.0 ACKNOWLEDGE POLLING 7.0 READ OPERATION
Since the device will not acknowledge during a write cycle, this can be used to determine when the cycle is complete (this feature can be used to maximize bus throughput). Once the stop condition for a write command has been issued from the master, the device initiates the internally timed write cycle. ACK polling can be initiated immediately. This involves the master sending a start condition followed by the control byte for a write command (R/W = 0). If the device is still busy with the write cycle, then no ACK will be returned. If the cycle is complete, then the device will return the ACK and the master can then proceed with the next read or write command. See Figure 5-1 for flow diagram. Read operations are initiated in the same way as write operations with the exception that the R/W bit of the slave address is set to one. There are three basic types of read operations: current address read, random read, and sequential read.
7.1
Current Address Read
FIGURE 5-1:
ACKNOWLEDGE POLLING FLOW
Send Write Command
The 24C01B/02B contains an address counter that maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous access (either a read or write operation) was to address n, the next current address read operation would access data from address n + 1. Upon receipt of the slave address with R/W bit set to one, the 24C01B/ 02B issues an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the 24C01B/ 02B discontinues transmission (Figure 7-1).
7.2
Random Read
Send Stop Condition to Initiate Write Cycle
Send Start
Send Control Byte with R/W = 0
Random read operations allow the master to access any memory location in a random manner. To perform this type of read operation, first the word address must be set. This is done by sending the word address to the 24C01B/02B as part of a write operation. After the word address is sent, the master generates a start condition following the acknowledge. This terminates the write operation, but not before the internal address pointer is set. Then the master issues the control byte again but with the R/W bit set to a one. The 24C01B/02B will then issue an acknowledge and transmits the eight bit data word. The master will not acknowledge the transfer but does generate a stop condition and the 24C01B/02B discontinues transmission (Figure 7-2). NO
Did Device Acknowledge (ACK = 0)? YES Next Operation
7.3
Sequential Read
Sequential reads are initiated in the same way as a random read except that after the 24C01B/02B transmits the first data byte, the master issues an acknowledge as opposed to a stop condition in a random read. This directs the 24C01B/02B to transmit the next sequentially addressed 8-bit word (Figure 7-3). To provide sequential reads the 24C01B/02B contains an internal address pointer which is incremented by one at the completion of each operation. This address pointer allows the entire memory contents to be serially read during one operation.
6.0
WRITE PROTECTION
The 24C01B/02B can be used as a serial ROM when the WP pin is connected to VCC. Programming will be inhibited and the entire memory will be write-protected.
7.4
Noise Protection
The 24C01B/02B employs a VCC threshold detector circuit which disables the internal erase/write logic if the VCC is below 1.5 volts at nominal conditions. The SCL and SDA inputs have Schmitt trigger and filter circuits which suppress noise spikes to assure proper device operation even on a noisy bus.
DS21233A-page 6
Preliminary
(c) 1997 Microchip Technology Inc.
24C01B/02B
FIGURE 7-1: CURRENT ADDRESS READ
S T A R T CONTROL BYTE S T O P
BUS ACTIVITY MASTER
DATA n
SDA LINE
S
A C K N O A C K
P
BUS ACTIVITY
FIGURE 7-2:
RANDOM READ
S T T CONTROL BYTE WORD ADDRESS (n) S T A R T CONTROL BYTE S T O P
BUS ACTIVITY A MASTER R
SDA LINE
DATA n
S
A C K A C K
S
A C K N O A C K
P
BUS ACTIVITY
FIGURE 7-3:
SEQUENTIAL READ
CONTROL BYTE
A C K A C K A C K S T O P
BUS ACTIVITY MASTER
SDA LINE
P
A C K DATA n DATA n + 1 DATA n + 2 DATA n + X N O A C K
BUS ACTIVITY
8.0
8.1
PIN DESCRIPTIONS
Serial Data
8.3
WP
This pin must be connected to either VSS or VCC. If tied to VSS, normal memory operation is enabled (read/write the entire memory). If tied to VCC, WRITE operations are inhibited. The entire memory will be write-protected. Read operations are not affected. This feature allows the user to use the 24C01B/02B as a serial ROM when WP is enabled (tied to VCC).
This is a bi-directional pin used to transfer addresses and data into and data out of the device. It is an open drain terminal, therefore the SDA bus requires a pull-up resistor to VCC (typically 10 K for 100 kHz). For normal data transfer SDA is allowed to change only during SCL low. Changes during SCL high are reserved for indicating the START and STOP conditions.
8.2
SCL Serial Clock
This input is used to synchronize the data transfer from and to the device.
(c) 1997 Microchip Technology Inc.
Preliminary
DS21233A-page 7
24C01B/02B
NOTES:
DS21233A-page 8
Preliminary
(c) 1997 Microchip Technology Inc.
24C01B/02B
NOTES:
(c) 1997 Microchip Technology Inc.
Preliminary
DS21233A-page 9
24C01B/02B
NOTES:
DS21233A-page 10
Preliminary
(c) 1997 Microchip Technology Inc.
24C01B/02B
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. 24C01B/02B -- /P Package: P = Plastic DIP (300 mil Body), 8-lead SN = Plastic SOIC (150 mil Body) E = -40C to +125C
Temperature Range:
24C01B Device: 24C01BT 24C02B 24C02BT
1K I2C Serial EEPROM 1K I2C Serial EEPROM (Tape and Reel) 2K I2C Serial EEPROM 2K I2C Serial EEPROM (Tape and Reel)
Sales and Support
Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. Your local Microchip sales office. 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277. 3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required). Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
(c) 1997 Microchip Technology Inc.
Preliminary
DS21233A-page 11
Note the following details of the code protection feature on PICmicro(R) MCUs. * * * The PICmicro family meets the specifications contained in the Microchip Data Sheet. Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable". Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.
* * *
If you have any further questions about this matter, please contact the local sales office nearest to you.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro(R) 8-bit MCUs, KEELOQ(R) code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.
2002 Microchip Technology Inc.
M
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office
2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com
ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
Japan
Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Rocky Mountain
2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456
China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104
Korea
Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934
Atlanta
500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307
Singapore
Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850
Boston
2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821
China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599
Taiwan
Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
Chicago
333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924
China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521
EUROPE
Denmark
Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910
Detroit
Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260
China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
Kokomo
2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387
France
Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Los Angeles
18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338
China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086
New York
150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335
Germany
Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
San Jose
Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955
Hong Kong
Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431
Italy
Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883
Toronto
6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509
India
Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062
United Kingdom
Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820
01/18/02
2002 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of 24C02B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X